	Learning objective	Main teaching	Activity	Resources	Vocabulary
Monday	LO to use mathematical vocabulary when working with decimals	Where in life do we use decimals? How are they useful? Can you think of when we use decimals down to thousandths? Weight in kg? Distance in km? How does this help? Write a list of as many examples of decimals in use in real life as you can. You might like to research on the internet.	Look below this plan for today's independent activities. It is really important that you complete them, even if you think you know all of this, because it shows decimals in lots of different ways and you will need this information in the next few lessons. Mark your work when you are finished.	Worksheets saved below Pencil Maths paper	Decimal Tenth Hundredth Thousandth Decimal point Whole Represents
Tuesday	LO to explore numbers between two whole numbers	Count out loud in money intervals: 10p? 20p? 50p etc. Write this down: $£ 0.10 £ 0.20 £ 0.30$ etc Now try counting in 5ps. Write the pattern. Further challenge: try 1 ps? 2 ps? $4 p$? $£ 1.20$ s? Now watch: Decimals to 2dp https://vimeo.com/485432781	Scroll down this document to find the independent tasks for Tuesday. Complete the worksheet based on decimals to 2 decimal places. Mark your work when you are finished.	Worksheets Pencil Maths paper	Decimal Fraction Whole Tenths Hundredths Thousandths
Wednesday	LO to understand the link between decimals and fractions	Count back and forward in 0.1s. Practise this saying 'one tenth, two tenths etc' and then ' $0.1,0.2$ etc' What happens when you reach 1 whole? Can you count backwards from 10 in tenths? Now watch: Decimals as fractions https://vimeo.com/490693175	Work through your worksheet called ' Y 6 Wednesday independent task' Read the questions carefully and you might find it useful to draw a place value grid in your book before you start: H T U . t h th th	Worksheets Maths paper Pencil	Decimal Fraction Numerator Denominator Whole Tenths Hundredths Thousandths

Thursday	LO to find and understand numbers between two decimal numbers	Recap the counting from previous days. What comes between 0.15 and 0.16 ? Are there any numbers between? Practice counting from 0.150 in thousandths: $0.150,0.151$ etc Now watch: Understanding thousandths https://vimeo.com/485550430	Scroll down to find your worksheet: 'Y6 Thursday independent task'. You may choose 10 questions from A or B to complete but read them carefully first (and read the example) so that you make a choice based on how confident you feel.	Worksheets Pencil Maths paper	Decimal Fraction Numerator Denominator Whole Tenths Hundredths Thousandths
Friday	LO to solve problems using decimals to 3dp	Now watch: Thousandths as decimals https://vimeo.com/487196408	Visit this website. Recap your learning from this week by completing the quiz, watching the videos, reading the information and doing the activity at the end. https://www.bbc.co.uk/bitesize/articles/zt4wc mn If you have a willing adult or sibling (or maybe a friend over video call?) have a go at playing this game: Spiralling Decimals! https://nrich.maths.org/10326	Video link Spiralling Decimals game BBC Bitesize link Paper Pencils	Decimal Fraction Numerator Denominator Whole Tenths Hundredths Thousandths

Scroll down for worksheets, activities and answers

Monday's independent activity

\square Which number is represented on the place value chart?

Ones	Tenths	Hundredths
	0	0
0	1	2

There are \qquad ones, \qquad tenths and \qquad hundredths.

The number is \qquad
Represent the numbers on a place value chart and complete the stem sentences.

$$
0.28
$$

0.65
0.07
1.26
$\$$ Make the numbers with place value counters and write down the value of the underlined digit.
2.45
3.04
4.44
43.34
$40.76=0.7+0.06=7$ tenths and 6 hundredths.
Fill in the missing numbers.

$$
\begin{gathered}
0.83=_+0.03=\ldots \\
0.83=0.7+\ldots=7 \text { tenths and }
\end{gathered}
$$

How many other ways can you partition 0.83 ?

Do you agree?
Explain why.
Alex says that 3.24 can be written as 2 ones, 13 tenths and 4 hundredths.

Do you agree?
How can you partition 3.24 starting with 2 ones?
How can you partition 3.24 starting with 1 one?
Think about exchanging between columns.

Four children are thinking of four different numbers.

Teddy. "My number has four hundredths."
Alex: "My number has the same amount of ones, tenths and hundredths."

Dora: "My number has less ones that tenths and hundredths."

Jack: "My number has 2 decimal places."
Match each number to the correct child.

Y6 Tuesday independent work

\square Use <, > or = to make the statements correct.

(1)
$13.33 \div 10$
\square Place the numbers in ascending order on the number line.

4 Place in descending order.
$\begin{array}{llll}- & 0.123 & 0.321 & 0.231\end{array} 0.103$

- $3.2 \mathrm{~km} \quad 3.21 \mathrm{~km} \quad 3.212 \mathrm{~km} \quad 3202 \mathrm{~m}$
- 65.39465 .30963 .99965 .493

Dexter is measuring a box of chocolates with a ruler that measures in

雨解

centimetres and millimetres.
He measures it to the nearest cm and writes the answer 28 cm .
What is the smallest length the box of chocolates could be?

Whitney is thinking of a number

-

Rounded to the nearest whole her number is 4

Rounded to the nearest tenth her number is 3.8

Write down at least 4 different numbers that she could be thinking of.

Dexter is measuring a box of chocolates with a ruler that measures in

centimetres and millimetres.
He measures it to the nearest cm and writes the answer 28 cm .
What is the smallest length the box of chocolates could be?

Whitney is thinking of a number.

Rounded to the nearest whole her number is 4
Rounded to the nearest tenth her number is 3.8
Write down at least 4 different numbers that she could be thinking of.

Smallest: 27.5 cm

Possible answers: 3.84
3.83
3.82 etc.

Some children might include answers such as 3.845

A number between 11 and 20 with 2 decimal places rounds to the same number when rounded to one decimal place and when rounded to the nearest whole number?

What could this be?
Is there more than one option? Explain why.

The whole number can range from 11
to 19 and the
decimal places
can range from
\qquad .95 to \qquad .99

Can children

explain why this works?

Y6 Wednesday Independent task

1) Complete the sentences.
a)

0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1

The whole has been divided into \square equal parts.

This is equivalent to \square
b)

The whole has been divided into
\square equal parts.

Each part is worth \square
 are shaded.

This is equivalent to

2 a) Shade 0.17 of the hundred square.

Complete the sentence.
\square parts out of \square are shaded.

Write 0.17 as a fraction.

b) Shade 0.2 of the hundred square.

Complete
\square
Write 0.2

(3)

0.1	0.1	0.1	0.1	0.1	0.1

0.2	0.2	0.2

Use the bar models to fill in the missi
$0.2=\frac{\square}{10}=\frac{1}{\square}$
$0.4=\frac{\square}{10}$
4) Fill in the missing numbers.
a) $0.54=\frac{\square}{100}=\frac{\square}{50}$
b) $0.6=\frac{\square}{10}=\frac{\square}{5}$
c) $0.3=\frac{\square}{10}=\frac{\square}{100}$
b) Shade 0.2 of the hundred square.

Complete the sentence.

Write 0.2 as a fraction in its simplest form.

(3)

```
|0.1
```

0.2	0.2	0.2	0.2	0.2

Use the bar models to fill in the missing numbers.
$0.2=\frac{\square}{10}=\frac{1}{\square}$
$0.4=\frac{\square}{10}=\frac{2}{\square}$
$\square=\frac{\square}{10}=\frac{4}{5}$
4) Fill in the missing numbers.
a) $0.54=\frac{\square}{100}=\frac{\square}{50}$
d) $\square=\frac{9}{100}$
b) $0.6=\frac{\square}{10}=\frac{\square}{5}$
e)

c) $0.3=\frac{\square}{10}=\frac{\square}{100}$
f) $\frac{21}{50}=\frac{\square}{100}=\square$

5 Use the bar models to fill in the missing numbers.

6

Draw a diagram to show that Ron is wrong.

Y6 Wednesday Answers

Decimals as fractions

a) | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

The whole has been divided into 10 equal parts.
Each part is worth 0.1
This is equivalent to $\frac{1}{10}$
b)

The whole has been divided in \qquad 00 equal parts.

Each part is worth 0.01
10 parts out of 100 are shaded.
This is equivalent to $\frac{10}{100}$ or $\frac{1}{10}$

2
a) Shade 0.17 of the hundred square

Complete the sentence

Write 0.17 as a fraction
$0.17=\frac{17}{100}$
b) Shade 0.2 of the hundred square.

Complete the sentence.

Write 0.2 as a fraction in its simplest form.
$0.2=\frac{1}{5}$

(3) | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

0.2	0.2	0.2	0.2	0.2

Use the bar models to fill in the missing numbers.
$0.2=\frac{2}{10}=\frac{1}{5}$
$0.4=\frac{4}{10}=\frac{2}{5}$
$0.8=\frac{8}{10}=\frac{4}{5}$
4) Fill in the missing numbers.
a) $0.54=\frac{56}{100}=\frac{27}{50}$
b) $0.6=\frac{6}{10}=\frac{3}{5}$
c) $0.3=\frac{3}{10}=\frac{30}{100}$
d) $0.09=\frac{9}{100}$
e) $0.9=\frac{9}{10}$
f) $\frac{21}{50}=\frac{42}{100}=0.42$

Use the bar models to fill in the missing numbers.

a) | | |
| :--- | :--- |

$\frac{1}{2}=\frac{5}{10}=0.5$
b)

6

Draw a diagram to show that Ron is wrong

A ${ }^{(1)}$					
10.9	70.25	$13 \frac{1}{4}$	$19 \frac{81}{100}$	$25 \frac{5}{10}$	$31 \frac{7}{100}$
20.27	80.89	$14 \frac{1}{10}$	$20 \frac{4}{10}$	$26 \frac{6}{100}$	3210
30.5	$90 \cdot 3$	$15 \frac{634}{1000}$	$21 \frac{562}{1000}$	272	$33 \frac{6}{10}$
40.03	100.011	$16 \frac{98}{100}$	$22 \frac{7}{100}$	$28 \frac{3}{10}$	$34 \frac{9}{10}$
50.7	110.75	$17 \frac{2}{100}$	$23 \frac{19}{100}$	$29 \frac{9}{100}$	$35 \frac{8}{100}$
60.135	120.008	$18 \frac{309}{1000}$	$24 \frac{57}{1000}$	309	362
B					
14.713	70.041	$133 \frac{839}{1000}$	$191 \frac{82}{1000}$	$25 \frac{2}{100}$	$31 \frac{2}{10}$
27.028	89.485	$148 \frac{75}{1000}$	$2027 \frac{7}{10}$	$26 \frac{5}{1000}$	$32 \frac{8}{1000}$
30.36	913.19	$1512 \frac{42}{100}$	$215 \frac{643}{1000}$	2750	$33 \frac{5}{100}$
42.007	105.006	$166 \frac{901}{1000}$	$223 \frac{2}{100}$	$28 \frac{8}{10}$	$34 \frac{7}{10}$
51.539 68.98	110.147	$174 \frac{6}{100}$	$2316 \frac{317}{1000}$	$29 \frac{8}{100}$	354
68.98 \sim	126.053	$189 \frac{548}{1000}$	$242 \frac{49}{100}$	$30 \frac{2}{1000}$	$36 \frac{6}{100}$

